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Abstract

We consider a class of steady-state semilinear reaction-diffusion
problems with non-differentiable kinetics. The analytical properties of
these problems have received considerable attention in the literature. We
take a first step in analyzing their numerical approximation. We present
a finite element method and establish error bounds which are optimal for
some of the problems. In addition, we also discuss a finite difference

approach. Numerical experiments for one- and two-dimensional problems are

reported.
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1. Introduction

The problem we consider is that of an irreversible steady-state
reaction taking place in a bounded domain  in ' (n =1,2,3) with
smooth boundary 29f2. The reason a steady-state occurs is that the reac-
tant used up in the reaction in § 1is replenished by diffusion from the
surrounding region. In [1], it is shown that the problem may be modeled

by a scalar equation for the concentration alone:

(1.1) M = Af(u(x)), x €Q (u201in Q)
u = 1 x € 99

where XA 1is a positive constant that measures the ratio of reaction to

diffusion rates. The function f measures the ratio of the reaction rate

at concentration u to that at concentration unity. We assume that the

function f satisfies the following conditions:

(1.2) f(¢) = 0 i t ¢ 0, f(1) =1

(1.3) r(t) = tPry(t) for 0 ¢t < = 0<mgfplt) M< =
[fo"(t)] <K, 0<p<1

(1.4) £r(t) + £t) 5 for 0<t g 1.

1-t

For the case of a non-isothermal reaction, we may obtain the tempera-

ture v of the reactant from the relation

(1.5) v = B(1-u) +1

where 8 > 0 1if the reaction is exothermic and B8 < 0 if {t is endo-

thermic. We will primarily be interested in the isothermal case (B = 0),
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when v remains identically unity f[u and v are nondimensional
variables].

The problem (1.1) has been discussed in an analytical framework in [1]
and [3]. An interesting feature analyzed in these papers is the exis-
tence of a "dead core," i.e., a region in @ where u identically van-
ishes, for p <1 and A 1large enough. Physically, this means that the
rate of reaction is so high that the reactant is being consumed in the
dead core faster than it can be replaced through diffusion across the
boundary 3.

The goal of this paper is to take a first step in approximating (1.1)
numerically. We will analyze numerical schemes only for the case of pth

order isothermal reactions, for the case 0 < p < 1, where f |is

explicitly given by:

(1.6) r(t) = tP for t >0

= 0 for t < 0.

It can be seen that this function satisfies (1.2) - (1.4)

For p 2 1, this nonlinear problem may be approximated by several
methods (for e.g. [2], [4]). However, when p < 1, f 1is not differen-
tiable at the origin (and if p = 0, it is not even continuous there).

Hence, the convergence theorems in the above papers fail and a different

analysis is required for the case of non-differentiable kinetics.

The plan of the paper is as follows. In Section 2, we 1ist existence,
uniqueness and regularity results from [1] and [3] that will be needed.
In Section 3, we present a finite element method for (1.1) and obtain an

error estimate for its convergence. In Section 4, we discuss a finite
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difference scheme for the problem. Section 5 contains the results of

numerical experiments using our schemes.

2. Existence, Uniqueness and Regularity Theorems

The following theorem is proved in [3].

2
Theorem 2.1. Let f satisfy (1.2) - (1.4). Let Q have a C ' %

boundary 39. Then there exists a unique solution of (1.1) belonging to

c2'%(f) where a = min(p,aq).

Since the function f given by (1.6) satisfies (1.2) - (1.4), the
above theorem holds for this function. In [1], an alternate proof of
existence and uniqueness is provided, where conditions (1.3) - (1.4) are
replaced by the requirement that f is positive, continuously
differentiable and monotone increasing on (0,«). This provides results
for the function £ in (1.6) for all p 2 O.

By the maximum principle, it follows readily that u ¢ 1 in Q.
Moreover, the condition (1.2) ensures that u > 0 in @, which is es-
sential in terms of physical considerations.

For a convex two-dimensional domain, the dead-core, if it exists, will
be convex. The existence of the dead core depends on the parameter A,
as expressed in the following theorem, a slightly modified version of

which is proved in [f].

Theorem 2.2. Let f satisfy (1.3). Then there exists a number AO >

0 such that (1.1) has a dead core for all ) 2 Ag.

If A 1is small enough or if p > 1, then no dead core will exist.

For the case of a pﬁﬁ.order fsothermal reaction in a slab, where @ =




Y A

Tt

[(-d,d] (d 1is the width of the slab) and f 1is given by (1.6), the dead

core appears only if

>

/2

(2.1) > T-p

- where A (0<p <)

Moreover, the size of the dead core Do = [-Y,Y] 1is determined by
(2-2) Y = d - ——

Similarly, for a pEﬂ-order isothermal reaction in a ball, there is a crit-
ical value AO such that a dead core appears if and only if A 2 Ao. The
above facts are proved in [1], where several other theorems for the exis-
tence and non-existence of a dead core are provided.

Finally, it is shown in [3] that asymptotically, as A + «, the boun-
dary of the dead core approaches a smooth surface parallel to 3Q at dis-
tance - + 0(%9. 8§ constant.

/A
3. A Finite Element Approximation
For convenience, we make the substitution v =1 - u in (1.1), (1.6).

This yields the problem
(3.1) -av = Ag(v) in @

v = 0 on df

where
(3.2) glv) = (1-v)P for v ¢ 1, p € (0,1)
= 0 for v > 1
o . ; ) P N ALAS R R AP B L w Wy
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We know that (3.1) has a unique solution v ¢ Hz(n). 0 v <1 where
the region G = {x | v(x) = 1} corresponds to the dead core. The
equivalent weak formulation of (3.1) is given by:

Find v € H;(n) satisfying

(3.3) (W,W) = alg(v),w) for all w ¢ H&(n)

where (+,+) denotes the usual LZ(Q) inner product.
Let now S" be a finite dimensional subspace of Hé(ﬂ) with the

property

(3.W) infhilv-x|0 +hjv=x] ) < Chslvls for 1 {sgr +1.
X€S
Here r denotes the degree of piecewise polynomials used. Since our
solution is only known to lie in HZ(Q), we restrict attention to the
case r =1 so that Sh consists simply of piecewise linear functions.
h ¢ gh

We say that v is an approximate solution of (3.1) if

(3.5) (W wth) = Ag(v), W) vwl ¢ sh.

Theorem 3.1. Let g be given by (3.2). Then there exists a func-

tion vl ¢ sP satisfying (3.5).
The proof of Theorem 3.1 requires the following lemmas:

Lemma 3.1. Let M, be a finite dimensional space and let T : M, *

Mn be continuous. Suppose there exists a sphere Sp with radius p and

center at the origin such that (Tx,x) > 0 for x on Sp. Then there

exists an x; such that Txy = 0 and |x0| <p .

. . e o A AT A e At A At A AT
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Proof: See, for example, [7].
Lemma 3.2. Let g be given by (3.2). Then for any v4,v, € R,
(3.6) lg(vy) - 8(vy)| < |vq - v,|P.

Proof. We may assume without loss of generality that v, > v,. [Iir

vy = vy, (3.6) holds trivially.] If v, 21, then we see that
lgtvy) - glvx)] < letvpd] < |1 - vulP < fvy - v,fP.

If vy < 1, then

0S1-V1<1-V2

so that 0 <

Hence, 1 - aP ¢ 1 -a ¢ (1-a)P, since 0 < p < 1. This gives

(1-vx)P - (1-v )P < (vy-v,)P
and (3.6) is proven.

Lemma 3.3. Let 0 < p < 1. Then for v 20,  v,w € L2(Q),
(3.7) [(vPow) ] ¢ C|v|g|w|o.
Proof. Using the Schwarz inequality, we have

[(vPLow) ] < c(£ (vP)%ax) % |w|0.

+

Now by Holder's inequality with q = and % % =1,

1
p
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from which (3.7) follows.

Proof of Theorem 3.1.

Define an operator T : Sh +> Sh as follows:

(thywh)
Clearly T 1is continuous.

Moreover, using (3.7),

(th,vh)

v

h,2 h h
[w'lg - et - v |g|v I

v

h,2 h h
C(|V1| - A[Ap+lv1|p]|"1| )

where A = measure of Q.

have

(rvi,vl) > o.

Applying Lemma 3.1 yields the theorem.

Theorem 3.2.

ing of piecewise linear functions, the solution vh 2 0 on

Proof. We first prove uniqueness.

of (3.5) and let wh - vg ~ v?. Then, from (3.5) we have:

\ L YL AR S U (PP "'(' ' S 4

(W, w - AVl W) for a1l Wb € sh.

(3.5) has a unique solution. Moreover, for sh

Q.

let v? and vg be two solutions

WP

Hence, for |vh|1 = p sufficiently large, we

consist-

O T :
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(W, W) = A(s(vg)—g(v?). vg-v?).

Since g(v) 1is decreasing in v, 1t follows that

w2 < o.

h

Since wh =0 on 98, this implies W' =0, that is Vi = vi.

Let now vh, the solution of (3.5) satisfy

Wi(N) < 0

for some nodal point Ni in the grid on 9. Then there exlsts a nodal

point NO such that
(3.8a) Vh(No) < vPx) for all x € .
(3.80)  vM(Ng) < ©

(3.8¢) vh(No) < vh(Nj) for at least one node NJ adjacent to N

(since vP =0 on 39).

Now, let Yo be the linear basis function that is 1 at the point No
and 0 at all other nodal points, and let be its support. Then, by
(3.8a), Vvh is of the opposite sign as Vwo on Q5 and by (3.8¢), Vvh
is not identically zero on Qy. Hence, substituting wh = VYo in (3.5),

we obtain

(wWhog) = [ W owggax =A™, ).

&

The left side is strictly negative while the right side is non-negative, a

contradiction.
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Remark. The non-negativity proof above is essentially the discrete
maximum principle (using linear functiona) for the non-linear problem
(3.1) with non-negative forcing function g.

h

We now deal with the question of convergence of v to v.

Theorem 3.3. Let vh be the solution of (3.5) and v the solution

of (3.3). Then

Ch if

A
| —
A
o
e

h
v - v |1

I

ch®®  if 0<p <-%

where the constant C 1is independent of h but depends on u, A, P

and Q.

Proof. Let x be as in (3.4) and wh ¢ sh.  Then, by (3.3), (3.5),

we have

(3.9) (Vv -), W)+ (g(x) -g(vh) W)
= (Vv-0, W+ (g(0-g(v),wh.

Taking w' = v’ - x in (3.9) gives
(3.10) |V(vh—x)|§ + (g(x)-g(vM) ,vh-y)

= Vv,V =0)) + (g0 -g(v) . vh-x).

Since g(v) 1is decreasing for v < 1 and zero for v > 1, it follows

that

h

(g(y)-g(vty,vl-x) > o.

e % 5. LA 8"y LR N o Ll S
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Hence, we may obtain from (3.10):

W01 ¢ W0l 9GP0 1 ¢ @ - V-0,
Using (3.6), (3.7) and the Poincaré inequality gives

W xl, < vexly ¢ /R Iv=xdD).

Using the approximation property (3.4) together with the triangle

inequality yields
h 2p p
(3.11) bv-v"l, < cvl, « A v

from which the assertion of the theorem follows.

Remark. The estimate given in Theorem 3.3 for the case p < % is
pessimistic. The numerical experiments in Section 5 suggest that one

gets 0(h) convergence for any p.

4. A Finite Difference Approach
In this section, we present a finite difference scheme for (1.1),

(1.6) and analyze its numerical properties.

Lo

> o

For the sake of our discussion, we take @ to be the unit square 0 ¢

x <1, 0<y < 1.
Let Qh be a uniform n x n finite difference mesh with mesh spac-
ing h and boundary anh. ui.j will indicate an approximate value of

the solution of (1.1), (1.6) at (xi,yj) = (ih,jh) for 0 < 1,j ¢ N.

iy will denote the vector with components uj,j» 1¢ i,y <N - T,

listed row by row.
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Let Ah be the usual five-point discrete Laplacian and consider the

scheme

(4.1) MG, = AOR on @, 8, = 1 on 3Q,.

Let m = (N-1)2 and let R" = (X | 0<x;, 1 =1,...,m}. Then (4.1)

may be expressed as a non-linear system of m equations in m unknowns:

(4.2) F(op) = (Fy(0)) = b
where F;; 1s defined on " for 2¢1,] < N-2 by

(u-3) Fij(uh) = - ui+1,J = ui_i’J = ui’J+1 = ui'J_1 + ‘lui'J + Ahzug"’-

For other values of 1i,], F1J is defined once again by (4.3) except that
the contributions from ui,j on aﬂh are taken on the right hand side to
comprise the vector 5. Notice that all entries in 5 will be non-
negative. In what follows, we will assume for simplicity that the compo-
nents of F and O, are given by {Fi} and {ui} respectively, { =
1,2,...,m. We will be using the terminology from [5] and [6] to define
terms like inverse lsotone, off-diagonally antitone and M-function.

g™

The continuous mapping E : + R™ turns out to be an M-function,

yielding the following result.

Theorem 4.1. The difference scheme (4.1) has a unique solution 0 ¢
4, < 1. Moreover, let 09,03 ¢ R"* be v 0
h . ’ 05 ectors with all components
and 1, respectively. For any w € (0,1] define the (SOR) iterates

gk by

. _ - ORI 4 ‘..._'- NP __.\._-. e
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k+1 k+1 k k

Fi(u1 ,....ui_1,u1.u1+1....,um) = b, for wu,
(4.4)
k+1 Kk k
u, = u ¢ m(u1 ui), 1 =1,2,...,m, k =0,1,...

Then the iterates {ﬂk} starting from u? and Dg are uniquely defined,

non-negative and converge monotonically to uh from below and above,

respectively.

Proof. We first show that F 1{s an M-function. By Def. 2.8 of [{],
we must show that F 13 inverse isotone and off-diagonally antitone.

Define ¢ : R"* + K" by

(4.5) 6,(8y) = Anug, 1¢1¢m.

Then it is immediately seen that 5 : B > " is a continuous, isotone,
diagonal mapping. Moreover, (4.3), (4.5) may be used to obtain the

-~

following splitting for F:

(4.6) F(O,) = A%, + §(0,).

The m x m matrix A 1is irreducibly diagonally dominant with ai.J <
O for 1 #j and ay 4 >0 for { =1,...,n. From this, it follows
that F if off-diagonally antitone. In addition, by 2.4.14, p. 55 of
(5], A 1s an M-matrix. The fact that F is inverse isotone now follows
easily by the proof of 13.5.6, p. 467 of [5].

By Theorem 2.10 of [6] , F 1is strictly diagonally isotone. We now

note that taking %y, ¥, ¢ R"* consisting of all O0's and all 1's,

respectively, yields

% < Yo

N AT NN AT AT \ P ACALATACNCY N ~r .
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F(%g) < b < F(§g)
and

J o= xer [ x%¢<x¢y%c A,

By Theorem 3.1 of [6], we find that for any w ¢ (0,1], the Gauss-Seide.
iterates {§,} and {%,} given by (4.4) and starting from §,; and

xo, respectively, are uniquely defined and satisfy Rk + x*, yk + y*,
F(x") = F(§") = b, where the monotonicity of the convergence insures 0 <
x{»¥f <1, 1 =1,2,...,m. Finally, the fact that %" = §* = 0, follows

from the inverse isotonicity of E, 8o that Uh is unique and 0 ¢ ﬂh < 1.

Remark: It is obvious that Theorem 4.1 will be true for any sub and

super solutions u? and ug, respectively, for (4.2).

(4.4) therefore provides us with an iterative scheme to solve (4.1)
which has been used successfully by us in computations. It is of interest
to note that the solution 0, of (4.1) does not have a discrete dead core
in the sense that ui,J # 0 at any point of the mesh. For, if ui,J =0

at a mesh point, then by (4.3) we obtain
Up1,g Y Yier,g YY1 YU L5e 2 0

so that by non-negativity of the solution,

U134 Ugsr,5 = Yg,3-1 T Ugge = 0.

This in turn implies that uh = 0 at all interior mesh points, a conse-
quence that obviously contradicts (4.1) adjacent to 3.

Numerical experiments show that the above difference scheme yields
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0o(h) convergence in the discrete H1 norm of the error. As for many
difference schemes, a higher convergence rate is obtained if it is
measured at the nodes alone. The following difference scheme for the one-
dimensional problem is interesting in this respect.

p p,.Dp
2 (“1+1 + 10uy +up

12 e

(“.5) ui"" - 2\11 + u1_1 = Ah

For the case when A =12 and p =%, (4.5) reproduces the true
solution u = x" exactly at the mesh points, so that the error is zero at

these points.

5. Numerical Experiments

In this section we look at results obtained using the finite element
method. In the one-dimensional case, the width of the dead core for
(1.1), (1.6) can be analytically determined by (2.1), (2.2). Moreover,
when Q =[-1,+1], p =0.5 and X = 12, the exact solution is given by
u = xu, which has a one-point dead core at the origin. 1In this case, the
error in the computations below can be measured exactly. In other cases,

the true solution is replaced by an approximation using a sufficiently

small mesh size [number of sub-intervals, N = 64]. The mesh size h 1is

given by 2/N.
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P A N H1 error
0.5 12 y 1.0438
8 0.5450
12 0.3610
16 0.2735
0.5 20 y 1.4404
8 0.7923
12 0.5387
16 0.3957
0.1 20 y 1.9429
8 1.00T71
12 0.6827
16 0.5035

The above experiments show the errors obtained with linear elements.
It is observed that the rate of convergence in the Hl norm is 0O(h) in
all cases. This corresponds with the estimates for p 2 0.5 in Theorem
3.3 but exceeds the rate of O(th) predicted for p < 0.5.

The two-dimensional results show exactly the same orders of conver-
gence. In this case, experiments are first performed over a square using
linear piecewise polynomials on a uniform triangular mesh. The next set
of experiments involve bilinear functions on a uniform rectangular mesh.
Both these finite element spaces satisfy (3.4). N now represents the
number of sub-divisions on each side of the square and the mesh size h

is once again 2/N. Some sample results are presented below.
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Linear Functions

p A N H1 error
0.5 y y 0.5485
8 0.2845

12 0.1910

16 0.1407

24 y 2.1017

8 1.1250

12 0.9330

16 0.5676

48 b 3.0907

8 1.8063

12 1.1848

16 0.9130

0.1 ] y 0.6155
8 0.3177

12 0.2140

16 0.1569

10 ] 1.5497

8 0.8694

12 0.6600

16 0.5393

20 h 2.3220

8 1.2086

12 0.8128

16 0.6024
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Bilinear Functions

P A N H1 error
0.5 4 4 0.4022
; 8 0.2030
: 12 0.1352
16 0.0995
: 24 4 1.7751
¥ 8 0.9312
l 12 0.6149
: 16 0.4596
‘ 48 4 2.8526
) 8 1.6228
: 12 1.0570
; 16 0.8051
)
0.1 4 y 0.4382
_ 8 0.2200
! 12 0.1468
:, 16 0.1077
! 10 y 1.1021
‘ 8 0.5718
12 0.4046
\ 16 0.3145
20 y 1.9706
‘ 8 0.9848
‘ 12 0.6559
16 0.4815

g A - -

Remarks:

(a) Dependence on A. It is observed that for large A, the

increase in the error for the same p and N s proportional to /T. as

- r -

> predicted by (3.11).
(b) L° errors. For some of our calculations, the L° errors con-
verged at the rate of 0(h2). In other cases, the convergence rate was
lower. We have not yet determined conclusively either by means of compu-

tation or analysis what the correct rate should be.
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(¢c) The case p = 0. Although Theorem 3.3 does not predict conver-

gence in this case, computationally, we once again observed O0O(h) conver-
gence in experiments similar to the above.

(d) Finite Difference Calculations. Computations based on the dif-

ference scheme (4.1) are not reproduced here. They showed similar magni-
tudes of error and identical rates of convergence as the finite element
case, both in the cne- and two-dimensional case.

(e) Boundedness of Approximate Solutions. 1In all our calculations,

we observed that the approximate solution always satisfied O ¢ up < 1.
For the finite difference case, this is justified by Theorem 4.1. For the
finite element case, the discrete maximum principle justifies u, < 1, as
shown in Theorem 3.2. We have not, however, been able to prove that

up 2 0.

(f) Existence of the Dead Core. In the one-dimensional case, it was

observed computationally that Theorem 2.2 was satisfied with AO =12
when p = 0.5. Similar critical values of A were observed for the two-
dimensional case. In the two-dimensional examples presented, for A =4
there was no dead core, while for other values of A, a dead core was

observed.
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